I am a Quantitative Analyst/Developer and Data Scientist with backgroud of Finance, Education, and IT industry. This site contains some exercises, projects, and studies that I have worked on. If you have any questions, feel free to contact me at ih138 at columbia dot edu.
Matrices are used to represent the risk and returns of the varioius portfolio.
When dot product of tow non-zero vector is 0. the vectors are called orthogonal.
Det = 0
then, No inverse matrix exist.
then, we call it a singular matrix.
That means there is a linear relationship between the rows (or columns).
$ \begin{vmatrix} a & b\\ c & d \end{vmatrix} = ad-bc$
$\begin{vmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{vmatrix} = (1) \begin{vmatrix} 5 & 6\\ 8 & 9 \end{vmatrix} - (2) \begin{vmatrix} 4 & 6\\ 7 & 9 \end{vmatrix} + (3) \begin{vmatrix} 4 & 5\\ 7 & 8 \end{vmatrix}$
$det(A)= a_{i1}C_{i1} + .... a_{in}C_{in}$
$det(A) = a_{1j}C_{1j} + .... a_{1j}C_{1j}$
where, $C_{ij} = (-1)^{i+j}M_{ij}$
$C_{ij}$ is cofactor , $M_{ij}$ is a minor (the determinant from det(A) by deleting the ith row and the jth column from A)
$A$ is a square matrix with dimension n. $x$ is an n-dimensional vector.
$x'Ax$ is a quadratic form.
$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 1x_1^2 + (2+3)x_1x_2 + 4x_2^2 $$
We can change A to symetric matrix B.
$B = \frac{1}{2}(A+A') = \begin{pmatrix} 1 & 2.5 \\ 2.5 & 4 \end{pmatrix}$
$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 2.5 \\ 2.5 & 4 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 1x_1^2 + (2.5+2.5)x_1x_2 + 4x_2^2 $$
References:
[1] Alexander, Carol. Market Risk Analysis. Vol. I. Chichester, England: Wiley, 2008. Print.