Chris IJ Hwang

I am a Quantitative Analyst/Developer and Data Scientist with backgroud of Finance, Education, and IT industry. This site contains some exercises, projects, and studies that I have worked on. If you have any questions, feel free to contact me at ih138 at columbia dot edu.

View My GitHub Profile



Contents

Introduction

Matrices are used to represent the risk and returns of the varioius portfolio.

Key Terms and Applications

  1. Linear questions --> the gamma and vega hedges for an options portfolio
  2. Covariance Matrix --> Variance of a linear portfolio
  3. Cholesky decomposition --> Simulating returns on correlated assets, Monte Carlo VaR
  4. Eigenvalue, Eigenvector --> Positive Definite of Matrix
  5. Principal Component Analysis

Brief

Orthogonal

When dot product of tow non-zero vector is 0. the vectors are called orthogonal.

Singular matrices

Det = 0

then, No inverse matrix exist.

then, we call it a singular matrix.

That means there is a linear relationship between the rows (or columns).

Determinant

$ \begin{vmatrix} a & b\\ c & d \end{vmatrix} = ad-bc$

$\begin{vmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{vmatrix} = (1) \begin{vmatrix} 5 & 6\\ 8 & 9 \end{vmatrix} - (2) \begin{vmatrix} 4 & 6\\ 7 & 9 \end{vmatrix} + (3) \begin{vmatrix} 4 & 5\\ 7 & 8 \end{vmatrix}$

$det(A)= a_{i1}C_{i1} + .... a_{in}C_{in}$

$det(A) = a_{1j}C_{1j} + .... a_{1j}C_{1j}$

where, $C_{ij} = (-1)^{i+j}M_{ij}$

$C_{ij}$ is cofactor , $M_{ij}$ is a minor (the determinant from det(A) by deleting the ith row and the jth column from A)

Quadratic

$A$ is a square matrix with dimension n. $x$ is an n-dimensional vector.

$x'Ax$ is a quadratic form.

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 1x_1^2 + (2+3)x_1x_2 + 4x_2^2 $$

We can change A to symetric matrix B.

$B = \frac{1}{2}(A+A') = \begin{pmatrix} 1 & 2.5 \\ 2.5 & 4 \end{pmatrix}$

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 2.5 \\ 2.5 & 4 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 1x_1^2 + (2.5+2.5)x_1x_2 + 4x_2^2 $$

References:

[1] Alexander, Carol. Market Risk Analysis. Vol. I. Chichester, England: Wiley, 2008. Print.